Extent of Use

The history of rainwater harvesting in Asia can be traced back to about the 9th or 10th Century and the small-scale collection of rainwater from roofs and simple brush dam constructions in the rural areas of South and South-east Asia. Rainwater collection from the eaves of roofs or via simple gutters into traditional jars and pots has been traced back almost 2 000 years in Thailand (Prempridi and Chatuthasry, 1982). Rainwater harvesting has long been used in the Loess Plateau regions of China. More recently, however, about 40 000 well storage tanks, in a variety of different forms, were constructed between 1970 and 1974 using a technology which stores rainwater and stormwater runoff in ponds of various sizes (see case studies in Part C, Chapter 5). A thin layer of red clay is generally laid on the bottom of the ponds to minimize seepage losses. Trees, planted at the edges of the ponds, help to minimize evaporative losses from the ponds (UNEP, 1982).

Rainwater Harvesting Project in The PhilippinesIn The Philippines, rainwater harvesting was initiated in 1989 with the assistance of the IDRC, Canada. About 500 rainwater storage tanks were constructed in the Capiz Province during this project. The capacities of the tanks varied from 2 to 10 m3, and the tanks were made of wire framed ferrocement. The construction of the tanks involved building a frame of steel reinforcing bars (rebar) and wire mesh on a sturdy reinforced concrete foundation. The tanks were then plastered both inside and outside simultaneously, which reduced their susceptibility to corrosion when compared with metal storage tanks.The Philippine rainwater harvesting system was implemented as a part of the income generating activities in the Capiz Province. Initially, loans were provided to fund the capital cost of the tanks and related agricultural operations. Under this arrangement, the project participant took a loan of $200, repayable over a three year period, and covering the cost not only of the tank but also for one or more income generating activities such as purchase and rearing of pigs costing around $25 each. Mature pigs can sell for up to $90 each, which provided an income generating opportunity that could provide sufficient income to repay the loan. This innovative mechanism for financing rural water supplies helped to avoid the type of subsidies provided by many water resources development projects in the past.(Source: Gould, 1992)

Operation and Maintenance

Maintenance is generally limited to the annual cleaning of the tank and regular inspection of the gutters and down-pipes. Maintenance typically consists of the removal of dirt, leaves and other accumulated materials. Such cleaning should take place annually before the start of the major rainfall season. However, cracks in the storage tanks can create major problems and should be repaired immediately. In the case of ground and rock catchments, additional care is required to avoid damage and contamination by people and animals, and proper fencing is required.

Level of Involvement

Various levels of governmental and community involvement in the development of rainwater harvesting technologies in different parts of Asia were noted. In Thailand and The Philippines, both governmental and household-based initiatives played key roles in expanding the use of this technology, especially in water scarce areas such as northeast Thailand.

Costs

The capital cost of rainwater harvesting systems is highly dependent on the type of catchment, conveyance and storage tank materials used. However, the cost of harvested rainwater in Asia, which varies from $0.17 to $0.37 per cubic metre of water storage (Table 10), is relatively low compared to many countries in Africa (Lee and Vissher, 1990).

Compared to deep and shallow tubewells, rainwater collection systems are more cost effective, especially if the initial investment does not include the cost of roofing materials. The initial per unit cost of rainwater storage tanks (jars) in Northeast Thailand is estimated to be about $1/l, and each tank can last for more than ten years. The reported operation and maintenance costs are negligible.

TABLE 10. Costs of Rainwater Catchment Tanks in Asia (Lee and Vissher, 1990)

System Vol m3 Cost $ Annual Equivalent Cost $/m3 Country
Reinforced Cement Jar 2 25 0.17 Thailand
Concrete Ring 11.3 250 0.29 Thailand
Wire Framed Ferrocement 2 67 0.37 Philippines
Wire FramedFerrocement 4 125 0.35 Philippines

Effectiveness of the Technology

The feasibility of rainwater harvesting in a particular locality is highly dependent upon the amount and intensity of rainfall. Other variables, such as catchment area and type of catchment surface, usually can be adjusted according to household needs. As rainfall is usually unevenly distributed throughout the year, rainwater collection methods can serve as only supplementary sources of household water. The viability of rainwater harvesting systems is also a function of: the quantity and quality of water available from other sources; household size and per capita water requirements; and budget available. The decision maker has to balance the total cost of the project against the available budget, including the economic benefit of conserving water supplied from other sources. Likewise, the cost of physical and environmental degradation associated with the development of available alternative sources should also be calculated and added to the economic analysis.

Assuming that rainwater harvesting has been determined to be feasible, two kinds of techniques–statistical and graphical methods–have been developed to aid in determining the size of the storage tanks. These methods are applicable for rooftop catchment systems only, and detail guidelines for design of these storage tanks can be found in Gould (1991) and Pacey and Cullis (1986, 1989).

Accounts of serious illness linked to rainwater supplies are few, suggesting that rainwater harvesting technologies are effective sources of water supply for many household purposes. It would appear that the potential for slight contamination of roof runoff from occasional bird droppings does not represent a major health risk; nevertheless, placing taps at least 10 cm above the base of the rainwater storage tanks allows any debris entering the tank to settle on the bottom, where it will not affect the quality of the stored water, provided it remains undisturbed. Ideally, storage tanks should cleaned annually, and sieves should fitted to the gutters and down-pipes to further minimize particulate contamination. A coarse sieve should be fitted in the gutter where the down-pipe is located. Such sieves are available made of plastic coated steel-wire or plastic, and may be wedged on top and/or inside gutter and near the down-pipe. It is also possible to fit a fine sieve within the down-pipe itself, but this must be removable for cleaning. A fine filter should also be fitted over the outlet of the down-pipe as the coarser sieves situated higher in the system may pass small particulates such as leaf fragments, etc. A simple and very inexpensive method is to use a small, fabric sack, which may be secured over the feed-pipe where it enters the storage tank.

If rainwater is used to supply household appliances such as the washing machine, even the tiniest particles of dirt may cause damage to the machine and the washing. To minimize the occurrence of such damage, it is advisable to install a fine filter of a type which is used in drinking water systems in the supply line upstream of the appliances. For use in wash basins or bath tubs, it is advisable to sterilise the water using a chlorine dosage pump.

Suitability

The augmentation of municipal water supplies with harvested rainwater is suited to both urban and rural areas. The construction of cement jars or provision of gutters does not require very highly skilled manpower.

Advantages

Rainwater harvesting technologies are simple to install and operate. Local people can be easily trained to implement such technologies, and construction materials are also readily available. Rainwater harvesting is convenient in the sense that it provides water at the point of consumption, and family members have full control of their own systems, which greatly reduces operation and maintenance problems. Running costs, also, are almost negligible. Water collected from roof catchments usually is of acceptable quality for domestic purposes. As it is collected using existing structures not specially constructed for the purpose, rainwater harvesting has few negative environmental impacts compared to other water supply project technologies. Although regional or other local factors can modify the local climatic conditions, rainwater can be a continuous source of water supply for both the rural and poor. Depending upon household capacity and needs, both the water collection and storage capacity may be increased as needed within the available catchment area.